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We simulate the classical diffusion of a particle of mass M in an infinite one- 
dimensional system of hard point particles of mass m in equilibrium. Each com- 
puter run corresponds to about 108 collisions of the diffusive particle. We find 
that (vv(t)) ~ 1/t ~ for t large enough, and a crossover from an M # m  regime 
where c5 = 2 to 6 = 3 for M = m. The diffusion constant has a sharp maximum 
at M=m. We study moments (x(t) 2) and (X(t)4), and examine the behavior 
of q2(t)= (x(t)4)/3(x(t)z)  2. We find that q( t )~  1 (consistent with a normal 
distribution) in the M ~  oo limit (for all times t) and in the t ~  oo limit for 
all M. 

KEY WORDS:  Diffusion; autocorrelation functions; long-time tails; one 
dimension. 

1. I N T R O D U C T I O N  

Some fundamenta l  quest ions abou t  diffusion phenomena ,  such as the long- 
time behavior  of the t ime-dependent  velocity autocorre la t ion  funct ion 

( v v ( t ) )  (from which the diffusion coefficient D follows), remain  unclear. 
Long- t ime tails were unexpectedly found numerical ly  over two decades ago 
by Aider and  Wainwr ight  (1) (see refs. 2 for reviews). Fur ther  computer  

work which supports  and  extends the original results has been carried 
out. (3~ There is some experimental  evidence for long-t ime tails from the dif- 
fusion of large particles suspended in fluids (4) and  from neu t ron  scattering 

experiments from which self-diffusion can be inferred. (5) Theoretical  
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arguments(2, 6) have also been given for their existence as well as for the 
values of A and 6, defined by 

(vv(t))--*(-A/t  ~) as t ~ o e  (1) 

However, some scepticism remains (e.g., ref. 7) that these results have not 
been established sufficiently firmly (e.g., numerical results used to determine 
6 extend over a range of values of (vv(t)) which is only a small fraction 
of a decade). A few exact results have, however, been established in the 
thermodynamic limit for a simplified model: diffusive motion of a particle 
of mass M (which we call "the test particle" hereafter) in a gas of hard 
point particles of mass m each, in thermal equilibrium, in one dimension. 
This is one of the simplest models of diffusion one can think of. In fact, 
motion of the test particle proceeds independently of whether the gas 
particles collide among themselves elastically as hard point particles or 
whether they move freely as in an ideal gas; this is because the only effect 
of such collisions is to exchange the identity of pairs of them as they 
collide. Despite the simplicity of the model, a sort of diffusion does take 
place in it. Upper and lower bounds for D have been obtained, (8) and its 
exact value is known C9) for M =  m. It has also been shown (1~ analytically 
for this model that (vv(t)) does have long-time tails and that 6 =  3 for 
M=m. [Computer results (11) for a one-dimensional system of particles 
with Lennard-Jones interactions also give 6 = 3, albeit for a somewhat 
small range of values of (vv(t)).] For d>~ 2, the mechanism for diffusion 
seems to be a different one(Z); the rule (3) 6 = d/2 is expected then. 

There remain some unanswered questions about diffusion in an equi- 
librium one-dimensional system of hard point particles: (a) it is not known 
how 6 or A varies with M; (b) doubts have been raised about whether the 
displacement does become a Gaussian random variable in the infinite-time 
limit(12, 13); (c) values of D have been computed only for a few values of 
M,(13, 14) but the overall M dependence of D is not yet clear (there is an 
interesting question (14) about its M--*0 limit, and its behavior in the 
neighborhood of M =  0 is unknown). 

We address these questions here and provide some numerically based 
answers for them. We follow the motion of the test particle of mass M for 
about 10 8 collisions within an infinite one-dimensional gas of hard point 
particles which is in equilibrium at temperature T. We obtain neat long- 
time tails of (vv(t)); some are shown in Figs. la and lb. Note that the 
x-axis variables are different in Figs. la and lb. Figure lb shows that the 
long-time tail of (vv(t)) oscillates for M small enough. Repeated collisions 
of a light test particle with its two neighbors lead to this effect in one 
dimension. The loglo[(VV(t))] is shown in Figs. 2a and 2b versus loglo(t) 
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Fig. 1. Plots of M(vv(t)), for several values of M, (a) versus tiM and (b) versus t. 

for large t for values of M not far from m. The 6 [defined in Eq. (1)] is 
obtained from such data points. Interestingly, our numerical result suggest 
the following behavior: (i) 6 = 3 for M = m, as predicted by Jepsen, (1~ but 
6 = 2 for M r  m in the neighborhood of M =  m; (ii) there is a finite cross- 
over time zc for M r  m such that an effective 6 = 3 behavior prevails for 
t < % and the 6 = 2 behavior only emerges for t ~> %. The diffusion constant 
D is obtained from the second moment  ( x ( t )  2) of the displacement x(t)  
which the test particle undergoes in time t. The result for D is shown in 
Fig. 3. Finally, in order to check whether displacements of the test particle 
are normally distributed, we monitor  the quantity q(t) defined by 

q(t) 2 = ( [X( t ) ]4 ) /3 ( [X( t ) ]e )  2 (2) 

For  normal processes, q ( t ) =  1. Our results for q(t) are summarized in 
Fig. 4.. 

2.  M E T H O D  

A description of our algorithm follows. We simulate an infinite system 
working with an open finite system of N particles (we keep N rather small: 
N =  32 throughout unless stated otherwise) on a line segment 2 '  of length 
Np -1 centered on the test particle. We move 5 ~ (within an infinite bath) 
so that the test particle remains at its center. Particles move in and out of 
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5O because (a) particles move and (b) 5 ~ itself moves. We next describe this 
procedure in some detail and why the errors it brings about are negligible. 
We start out with the test particle at x = 0 and N particles randomly dis- 
tributed within -(1/2)Np 1 and (1/2)Np -1. Normally distributed speeds 
u are assigned to each of the N bath particles, such that (u  2) =kT/m= l; 
the test particle is also given a random speed v, normally distributed, such 
that (v 2) =m/M. Let tl=O.O5Np -1 (a particle entering one end of s ~ 
traveling at a speed 10 times (u2 )  1/2, reaches the center of 5O in time tl). 
As the gas particles merely exchange identities upon collision, we do not 
keep track of their collisions; the motion of the test particle proceeds as if 
they were free and we therefore treat them so. We let all particles move 
freely until the test particle collides or until t~--whatever happens first. At 
that time t' (t' ~< t~), 5O is shifted to have x(t') at its center, and all particles 
not within s ~ are discarded thereafter. Now, even if 5O had not moved, 
particles would have streamed into and out of it. The motion of 5 ~ only 
modifies things slightly. Accordingly, we shoot particles into 5O as they 
would have come in from the bath, thus neglecting correlations which 
might have developed between them and the test particle at the center 
of 5 ~ We show below that, for N >  t6, the effect of this approximation is 
negligible on the quantities of interest here [such as (vv(t))] for the 
relevant values of t. We then iterate the process, we let all particles move 
freely until the test particle collides or until tl, and so on. 

The approximation just described makes the algorithm fast. It allows 
us to follow the test particle for about 108 collisions (most of our runs went 
up to 2 x 10' collisions). In order to justify it, we next show that the algo- 
rithm erases the memory of past collisions only at sufficiently long times 
after they have taken place. We now estimate the probability that after the 
test particle collides with another particle they move away from each other 
at least a distance l =  (1~2)No -~, and move closer thereafter until they 
collide again--all  within a time t. It can be checked (at least numerically) 
that the probability is largest if the other particle (which moves freely 
between collisions) is at rest, and we shall restrict ourselves to this (worst) 
case. Let the probability for such an event be P(l, t). Let us assume for the 
rest of this argument that the test particle does a simple random walk while 
the other one remains at the origin. Now note that the probability Po(l, t) 
that a random walker goes out to l within time t with no further require- 
ment (no need to return to the origin) fulfills P(l, t)-= Po(21, t); further- 
more, the probability p + (l, t) that the random walker is beyond l at time 
t fulfills 2p+(/, t ) =  Po(l, t). It follows that P(l, t ) =  2p+(2/, t). On the other 
hand, 

p +(l, t) ,,~ (2re Dt) -1/2 f exp(--x2/2Dt) dx. 
ol 
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We shall be interested in the case 12/2Dt>> 1. Then, it follows that 
P(l, t) ~ (1/y x/Tr) e x p ( -  y2), where y2 = 2l~/Dt. Consider, for instance, 
M =  m; we have obtained correlation functions only for t < 8 in this case 
(see below for units and see Figs. 2a, 2b, and 3 for numbers); putting in 
D ~ 0 . 8  and x = 1 6  (from l= (1 /2 )Np  -~ and N = 3 2 ) ,  it follows that 
y 2 >  80, which gives a very small P. The most unfavorable case is for 
M =  10m. We have obtained correlation functions for up to t = 4 0  for 
M = 10m; putting in D ~ 0.63 and l = 32 gives y2 > 20. The probability for 
the event under consideration is therefore always less than 10 -9, which is 
very small. Furthermore,  some checks were run using L~ twice as long 
( N =  64); no noticeable differences were found in the results obtained. 

We next describe the method used to compute (vv( t)) ,  (x(t)2), and 
(X(/)4). We keep track of values of v and x at times t' given by t' n =n At, 
where n is an integer, At ~ r/10, and z is the relaxation time associated with 
(vv(t)) .  We do not keep a record of all values of v and x (a total of ~ 109 
values for M = m, for instance), as it would be of an unmanageable length; 
rather, we compute these correlation functions right along as the values of 
v and x are generated, keeping in the computer  memory only a reasonably 
small string of ( ~ 103) the latest consecutive values. We do it as follows; let 
k -  n: mod(J )  (recall that n = t',/At; we usually let J =  1024) and evaluate 
v(k) and x(k) only at J values of k. Each time some new values of x and 
v are determined (say, the set of values between the latest two collisions), 
they are recorded at the corresponding values of k; the values of v and x 
at times tk_s are automatically overwritten (i.e., replaced by new values of 
v and x). To obtain (vv(tn)), we first define ~ = k - n :  rood(J), and add the 
term v(k)v(~) to the proper cumulative function each time a new value 
v(k) is added to the string {similarly, we keep adding terms like 
[ x ( k ) - x ( f i ) ]  2 to obtain (X(tn)2)}. For  M = m ,  for instance, r = 0 . 4 4  
and At=0.044,  and we made two runs which went on up to t ~ 2 x 1 0 8 ;  
therefore all data points shown in Fig. 2b for M =  m stand for averages 
over nearly 10 l~ terms. 

3. R E S U L T S  A N D  D I S C U S S I O N  

The results obtained are given next. We use units of p - 1  
p-l(rn/kT)l/2, and m for length, time, and mass, respectively; diffusion con- 
stants are correspondingly given in units of p l(kT/m)l/2. (It takes a unit 
of time for a gas particle with a mean square thermal velocity to move a 
distance p 1, and (v 2) = 1/M in these units.) Figure 2a exhibits long-time 
tails for M = 1/2, 3/4, 4/3, and 2. Clearly, 6 does not seem to vary and A 
depends weakly on M ( 6 ~ 2  and A ~0.3  for these four values of M). 
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Similar results are shown in Fig. 2b for M = 6/7, 1, and 7/6. Note that all 
three sets of data points show approximately the same slope (6 = 3) for 
t<0 .7 ;  the data points for M =  13/14 and 14/13 (not shown) also seem to 
follow a 6 = 2 straight line for t > 0.7. These results are the basis for our 
inference that there is a crossover from a 6 = 2  to a ~ = 3 behavior as 
[ M -  11 ~ 0 .  

Our values for D follow from the relation D = d ( F x ( t ) ] 2 ) / d t  for t 
large enough, and the values of ( I x ( t ) ] 2 ) ,  which are obtained as described 
above. A plot of data points for it versus the reduced mass p 
( l i p  - 1 + re~M) is shown in Fig. 3. There is reasonable agreement with the 
values found by Omerti et al. (13) and Boldrighini et al. ~14~ which were 
obtained by somewhat different methods. The value found for M - -  1 agrees 
with the exact (9/ one of (2/To) 1/2. The values for D span the whole range 
between the bounds known (8' 15) for it. It seems that (just as in ref. 14) D 
does not approach its M =  1 values as M ~  0. We do not, however, find 
this surprising: while the momentum of the test particle vanishes as M--> 0, 
its mean energy does not (it is kT/2,  independent of M), and, consequently, 
two particles "squeezing" the test particle in a collision conserve momen- 
tum but do not conserve energy. On the other hand, a "massless" test 
particle would not affect the motion of the two particles flanking it at all; 
diffusion would therefore then take place as for M - -  1. Finally, there seems 
to be a cusp in D at/~--0.5. It is quite likely associated with the crossover 
effect discussed above. 

We have something to say about doubts raised (~2) whether diffusion in 
this system is a Wiener process. We monitor the quantity q(t), defined in 
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Fig. 4. Quantity q(t) versus t for various values of M. 
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Eq. (2). Fo r  no rma l  processes, q(t) = 1. Our  results for q(t) are summar ized  
in Fig. 4. Clearly, q(t)--, 1 as t ~ 0% for all M; fur thermore,  q ( t ) ~  1 as 
M ~ 0% for all t imes t, in agreement  with the r igorous results of S~asz and 
T6th.  (15) Clearly, this behav ior  of q(t) is not a sufficient condit ion for a 
Wiener  process, but  it is a necessary one. 

We next make  a c o m m e n t  on the relaxat ion t ime and on the t ime tc 
at which ( vv ( t ) )  becomes  negative. If  there were no long-t ime tails and if 
( v v ( t ) ) = ( v 2 ) e x p ( - - t / z ) ,  then D = 2 ( v 2 ) z  would follow, and, conse- 
quently,  we would have 2r /M=D.  Instead,  we find that  the rule 
2z/M = (2/rc/~) 1/2, where z = 1/[d(ln(vv(t) ))/dt]t= o, fits, within statistical 
errors, our  results. 3 N o t  surprisingly, these two expressions for 2r/M agree 
in the M ~  oo limit ( # -+  1). A rough numerical  guide (it fits the da ta  
within abou t  20 % )  for how t c behaves,  to which we ascribe no par t icular  
theoretical  significance, is given by tc ~ (1.5 + 5.6#)-c, for 0.1 < / ,  < 0.9. 

There  is an addi t ional  reason why long-t ime tails become increasingly 
harder  to detect  as M increases: the "ampl i tude"  A [ - A  is the m i n i m u m  
value of M ( v v ( t ) ) ]  of the tails becomes very small for large M. More  
quanti tat ively,  A ,~0.0067M 1/2 for 1 < M <  4. Fo r  this reason, we were 
unable  to determine 6 for large values of M. 

We give no physical  picture here for the interesting M =  1 singular 
behavior  of  (vv ( t ) )  for long times, nor  for the associated cusp of D (see 
Fig. 3). 
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